Experimental demonstration of classical Hamiltonian monodromy in the 1:1:2 resonant elastic pendulum.

نویسندگان

  • N J Fitch
  • C A Weidner
  • L P Parazzoli
  • H R Dullin
  • H J Lewandowski
چکیده

The 1:1:2 resonant elastic pendulum is a simple classical system that displays the phenomenon known as Hamiltonian monodromy. With suitable initial conditions, the system oscillates between nearly pure springing and nearly pure elliptical-swinging motions, with sequential major axes displaying a stepwise precession. The physical consequence of monodromy is that this stepwise precession is given by a smooth but multivalued function of the constants of motion. We experimentally explore this multivalued behavior. To our knowledge, this is the first experimental demonstration of classical monodromy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy.

We consider the wide class of systems modeled by an integrable approximation to the 3 degrees of freedom elastic pendulum with 1:1:2 resonance, or the swing-spring. This approximation has monodromy which prohibits the existence of global action-angle variables and complicates the dynamics. We study the quantum swing-spring formed by bending and symmetric stretching vibrations of the CO2 molecul...

متن کامل

Monodromy in the resonant swing spring

This paper shows that an integrable approximation of the spring pendulum, when tuned to be in 1 : 1 : 2 resonance, has monodromy. The stepwise precession angle of the swing plane of the resonant spring pendulum is shown to be a rotation number of the integrable approximation. Due to the monodromy, this rotation number is not a globally defined function of the integrals. In fact at lowest order ...

متن کامل

Fractional Hamiltonian Monodromy from a Gauss-manin Monodromy

Fractional Hamiltonian Monodromy is a generalization of the notion of Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A. Sadovskíı and B. I. Zhilinskíı for energy-momentum maps whose image has a particular type of non-isolated singularities. In this paper, we analyze the notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin Monodromy of a Riemann surface con...

متن کامل

Hamiltonian monodromy via geometric quantization and theta functions

In this paper, Hamiltonian monodromy is addressed from the point of view of geometric quantization, and various differential geometric aspects thereof are dealt with, all related to holonomies of suitable flat connections. In the case of completely integrable Hamiltonian systems with two degrees of freedom, a link is established between monodromy and (2-level) theta functions, by resorting to t...

متن کامل

Monodromy of the quantum 1:1:2 resonant swing spring

We describe the qualitative features of the joint spectrum of the quantum 1:1:2 resonant swing spring. The monodromy of the classical analogue of this problem is studied in Dullin et al. [Physica D 190, 15–37 (2004)]. Using symmetry arguments and numerical calculations we compute its three-dimensional (3D) lattice of quantum states and show that it possesses a codimension 2 defect characterized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 103 3  شماره 

صفحات  -

تاریخ انتشار 2009